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PostgreSQL is an open source relational database system, originally designed at the University of California - Berkeley and now maintained by the global PostgreSQL Global Development Group (PGDG).  

PostgreSQL is designed to be an extensible system, and as a result new features are added to the system with every release.  Highlights of the feature list as of version 7.2.2 include:

· Foreign Keys, Joins, Views, and Triggers

· SQL92 and SQL99 data types, BLOBs and byte arrays

· Nested sub-selects and other complex SQL constructs

· B-Tree, R-Tree, L-Tree, GiST and Hash indexes

· ODBC and JDBC drivers

· Native APIs for Perl, Python, C, C++, TCL, Java

· Server-side languages, PL/pgSQL, PL/TCL, PL/Perl, C

· Transactions, rollbacks (ACID)

· Locking with multi-version concurrency control (MVCC)

· Networked client/server protocol

· Multiple platform support (AIX, HP-UX, Linux, Solaris, OS/X, Windows 2000, and many more)

The PGDG steering committee consists entirely of active contributors to the PostgreSQL project, similar to the structure of the Apache Foundation which maintains the open-source Apache web server.  Some of the PGDG contributors are employed by corporations who are using or selling PostgreSQL, others are academics or independent developers.  Most of the PGDG steering committee members are employed full time by various companies to work on PostgreSQL development.

Commercial support for PostgreSQL is available from Command Prompt (under the trade name Mammoth PostgreSQL) and from PgSQL Inc.

The current version of PostgreSQL is 7.4.2 and as of this writing the 7.5 release is moving into beta testing.

1.1 History and Architecture of PostgreSQL

1.1.1 The Postgres Project

The PostgreSQL code base descends directly from the Postgres academic database research project.  Postgres was developed at the University of California at Berkley, under the direction of Dr. Michael Stonebreaker, from 1986 to about 1994.  

As a research project, Postgres was a descendant of Ingres, an earlier project by Stonebreaker to prove out concepts in relational database design.  Ingres was developed from 1977 to 1985 and was commercialized by Relational Technologies, one of the early leaders in the field of relational databases and a competitor to Oracle Corporation.  Postgres started with a fresh code base and built on the lessons learned during the Ingres project.

Before beginning the Postgres project, Stonebreaker and Lawrence Rowe laid out their design goals in a 1986 paper, "The Design of Postgres":

1. to provide better support for complex objects;

2. to provide user extendibility for data types, operators and access methods;

3. to provide facilities for active databases (i.e., alerters and triggers) and inferencing including forward- and backward-chaining;

4. to simplify the DBMS code for crash recovery;

5. to produce a design that can take advantage of optical disks, workstations composed of multiple tightly-coupled processors, and custom designed VLSI chips; and, 

6. to make as few changes as possible (preferably none) to the relational model.

The resulting Postgres project ran until 1994, and achieved all the goals laid out by Stonebreaker in the initial design:

1. Complex objects such as paths, money types, arrays, and other non-linear objects were supported and indexable.  

2. User extensibility was provided through a system which allowed the registration of functions, operators, languages, and datatypes in the system tables -- the result being a system which was highly run time configurable.  

3. Triggers were supported along with side effects.  

4. The simplified code allowed individual components of the system to fail gracefully without taking down the whole system or corrupting the data.  

5. The multi-process backend design would scale cleanly on operating systems which supported multiple processors.  

6. And the system retained its relational character.

In summary, the Postgres project created a system which had exceptionally good design.  Because it was an academic project, implementation reliability was less important that good design and concepts, but the result was a very modern system.  The Postgres feature list in 1994 included concepts (indexable complex objects, rtree indexes, user extensibility) which would not be included in Oracle until the Oracle 8i release in 2000.

It is interesting to note that from a historical computer science point of view Oracle is not a contemporary of Postgres but of Ingres -- the system Stonebreaker retired in 1986 because the code base had become too crufty and out of date for further research and extension.

1.1.2 Postgres95

One important feature which Postgres lacked at the end of its academic life was the SQL query language.  By 1994, SQL was well entrenched as the standard query language for relational database systems, with a fresh standard (SQL92) and plenty of commercial implementations.  

Two Berkeley graduate students, Jolly Chen and Andrew Yu, converted the Postgres query language to SQL, between 1994 and 1995, and released the new version as Postgres95.  With a standard query language and a price point of zero, Postgres95 quickly began to develop a user base among the academic and internet community.  Computer scientists continued to tinker with it as a concept proving ground, but other organization began to put it into service as a production database system for their own research projects.

Chen and Yu later left Berkeley, but Chen continued to maintain Postgres95 until 1996 when the Postgres Global Development Group (PGDG) formed to begin maintenance and improvement of the Postgres95 code base.

1.1.3 PostgreSQL

In 1996, the PostgreSQL project finally left Berkeley when the PGDG set up an independent project site and code archive.  The early team consisted of four core members, who initially focussed on documenting the code structure and resolving bugs.  Rapid uptake of the Postgres95 software had begun exposing the academic code to use cases which it had never been through before, and the result was a system with numerous known failure cases.  PGDG member Bruce Momjian describes the early days of PostgreSQL development:

“Although we had many eager developers, the learning curve in understanding how the database worked was significant. Many developers became involved in the edges of the source code, like language interfaces or database tools, where things were easier to understand. Other developers focused on specific problem queries, trying to locate the source of the bug. It was amazing to see that many bugs were fixed with just one line of C code. Because Postgres had evolved in an academic environment, it had not been exposed to the full spectrum of real-world queries. During that period, there was talk of adding features, but the instability of the system made bug fixing our major focus. “

When PostgreSQL version 6.5 was released in 1999, the PGDG noted that they had finally completed the transition from code maintainers to code developers.  The system was now extremely stable, and complex new features were now being added to the system with each new release.  For example, the 6.5 release marked the inclusion of multi-version concurrency control (MVCC) as the PostgreSQL record locking scheme -- it would be two more years before Oracle added MVCC support to their RDBMS server.

Since then, subsequent releases have maintained PostgreSQL's position as the most advanced open source relational database.  In 2000, version 7.0 added support for foreign keys, a new genetic query optimizer, and support for SQL92 join syntax.  

In 2001, version 7.1 added a write-ahead log for even better reliability, full support for outer joins, and support for unlimited sized tuples (dubbed "tuple toasting").  Tuple toasting was an important advancement for supporting spatial data in the database, because it meant that arbitrarily sized spatial objects could be written into tuples without concern about exceeding the database page size.

In 2002, version 7.2 added features necessary for high-volume database installations.  An old transaction limit (4 billion transactions) was fixed allowing for unlimited transactions.  The optimizer was tuned to use more detailed table statistics when computing query plans on large tables.  Database optimizing was also improved, allowing databases to be cleaned and optimizer statistics recomputed without locking the tables.

In 2003, version 7.3 added support for schemas, prepared queries, multi-byte internationalization (useful for Chinese, Japanese and others), and numerous enhancements to the query planner for more speedy querying.

In 2004, version 7.4 added a re-optimized query parser and planner, with better support for “IN” clauses, “GROUP BY” and “JOIN” processing.  For data marts and other installations with complex query requirements, 7.4 was a substantial performance increase.  On the programming side, all the client and server libraries were made thread-safe, the client/server protocol was upgrade to support new cursor features, and support for array data types was improved.

The upcoming version 7.5 will include as major features native Windows support, nested transactions, and possibly point-in-time recovery.

1.2 PostgreSQL Features

1.2.1 Server Features

ACID Database -- Like most commercial databases, PostgreSQL passes the "ACID test" of transactional integrity.  That is, every transaction has Atomicity, Consistency, Isolation and Durability.  Atomicity means that every transaction is treated as a single unit of work -- even if it involves multiple data updates and inserts.  Consistency is an extension of atomicity -- each transaction either proceeds to completion or fails in its entirety, transactions are not allowed to partially complete and leave the database in an inconsistent state.  Isolation means that every transaction operates independently -- once a transaction begins work, the database state does not change beneath it. Finally, durability means that the database will maintain all of the previous three properties even in the presence of an uncontrollable catastrophic failure, like a power outage or operating system crash -- pull the power cord on an ACID database, and the system will still come up in a consistent state, with all data up to the last successfully completed transaction

SQL92 and SQL99 -- PostgreSQL supports most SQL92 and SQL99 types, and most SQL92 and SQL99 query syntax.

Server Side Languages -- Triggers and functions can be written in six server-side languages.  PL/PgSQL is a procedural language with a similar syntax to Oracle's PL/SQL and is often used when porting applications from Oracle to PostgreSQL.  PL/TCL, PL/Perl and PL/Python bring popular standard scripting languages into the PostgreSQL server for use in complex triggers and functions. C can be used to write high-performance functions compiled and linked directly into the server. Finally,  functions can be written in SQL which allows common SQL commands to be stored on the server side.

Backup and Restore -- PostgreSQL supports "hot backups" allowing a consistent state of the database to be dumped to an external file while the database remains in production mode.  PostgreSQL dump files are text based, and usually passed through compression programs before being archived in order to save space.

Extensibility -- New types can be added to the database, along with supporting functions, using a simple C API.  New index types can also be added to the database, either directly or as an implementation of the generic GiST (Generalized Search Tree) index.

Complex Types -- In addition to the SQL92 types, PostgreSQL has a wealth of other types, including monetary types, autoincrementing types, network address types, simple geometric types, and byte arrays.  

1.2.2 Interfaces

JDBC – The PostgreSQL JDBC (Java Database Connectivity) driver supports the JDBC2 specification published by Sun Microsystems.  JDBC is the standard Sun created to make relational database access from the Java language independent of the backend database type.  The PostgreSQL JDBC driver is frequently used to integrate PostgreSQL in J2EE web services.

ODBC – The PostgreSQL ODBC driver supports the ODBC specification published by Microsoft.  ODBC is a standard Microsoft method of accessing relational databases in a database-independent manner.  The PostgreSQL ODBC driver is frequently used to build desktop Windows applications which use a PostgreSQL database as the backend data store, or as a transport for migrating a database from MSAccess to PostgreSQL.

libpq – LibPQ is the standard C client interface to PostgreSQL.  It is used by all almost all the "higher level" interfaces, such as the Perl, Python, TCL, etc, which wrap the LibPQ interface in appropriate bindings for their own language.  LibPQ is highly portable and can be compiled natively on almost any platform.  This means it is possible to write a PostgreSQL client program on any platform which supports the C language and has TCP/IP networking abilities.

1.3 PostgreSQL Installations

As with all open source products, characterizing the users of PostgreSQL is difficult because there is no central point of contact to determine who has put the product to use, and for what purposes.  As a result, these examples of PostgreSQL installations are non-scientifically selected from information which is publicly available.  It is not a random or even necessarily a representative one.

These examples are taken from responses to an April 2002 post to the PostgreSQL users mailing list asking for information about the kinds of organizations using PostgreSQL.

1.3.1 Moby Games

Brian Hirt:

"Our company runs MobyGames (http://www.mobygames.com), a project similar to [Internet Movie Database] IMDB, but for video and computer games.  We exclusively use PostgreSQL.  We've been using it since December of 1998 (Version 6.5.3) and have been very happy with it.  The database is relatively small, around 1.5GB in about 200 tables.  All of our pages are dynamically created, and we serve up about 1,000,000 pages a day (each page usually causes at least 20-30 queries against the database.).  Most of the database activity is select queries, there is only about 0.5MB - 1.0MB of additional content added a day. The database runs on a single box and has performed well. When there have been problems with Postgres, the developers have been very proactive about finding a solution, and the problems have always been resolved within a day or two.  From extensive past experience with both Oracle and Sybase, I can say that's great."

1.3.2 THX

Brian Heaton:

"My firm is currently using Postgres as the back-end of a military network monitoring app.  This will end up being deployed in tactical vehicles.  Our databases tend to have 1 huge table (5-10M rows), 2-3 medium tables (50-100K rows), and 2 smaller tables (5-10K rows).  Our UI is currently in Java using JDBC (of course).  We also interface directly in C from a couple of utility and reporting apps."

1.3.3 IBoats.com

Steve Wolfe:

“Since I've posted a number of times to this list, it's no big secret that www.iboats.com is powered by PostgreSQL.  It's been rock-solid for us, and served us very well.  Our data directory is about 1.5 gigs in size, spread out over a few hundred tables, some very small, some very large. We do all of our programming in Perl.  Investors have never heard of PostgreSQL, and sometimes mention getting Oracle, so we tell them 'Terrific, if you want us to get Oracle, we can do that.  We'll just need an extra half-million dollars to do it with.'   Reality then slaps them in the face.....”

1.3.4 Just Sports USA

Gavin Roy:

“We've got a Windows based Point of Sale (POS) application in over 50 stores nation wide tied to a Linux based server farm running PostgreSQL 7.2 via a frame-relay network.  The POS application talks XML over HTTP to Apache/PHP.  My database has over 30 million dollars of transactions and has been rock solid without any issues.  This is a true enterprise system which runs our retail company.  Our applications are either web based (built with PHP and tools like pdflib) or built in Windows using Borland C++ Builder & Crystal Reports (over ODBC).  We use PgSQL as the backend for 

· Transaction processing (financial data)

· Purchasing

· Inventory Control

· HR Control including ADP integrated Time clock

· Customer management

· Web site content management

As far as data quantity [goes we have] over 20 million rows of data in 11 databases and approximately 130 tables.

I would and do recommend PostgreSQL to anyone that wants a true enterprise level open source RDBMS (and even non-open source).”

1.3.5 Other Installations

These synopses are taken from a posting by PgSQL Inc regarding companies that had signed up for their commercial support offering and had volunteered to be publicized as PostgreSQL users.

Affymetrix - A market leader in the creation of state-of-the-art tools for the genetic research industry, uses PostgreSQL in their Transcriptome Project to store data about large-scale RNA expression experiments derived from high-density GeneChip® microarrays.

Afilias - A global provider of domain name registry services, currently managing the first new generic extension launched on the Internet, .INFO.  This Ireland-based company manages over 900,000 domain names and over 10 million records in its PostgreSQL-backed database.

BASF - The worlds largest chemical company, uses PostgreSQL to store the data for their U.S. Agribusiness E-Commerce web site.

Cognitivity - The online e-Learning provider uses PostgreSQL as the preferred database for their presentation and management software. 

Journyx - The acknowledged world-wide leader in web based time and expense tracking, with over 1 million end users.  They use PostgreSQL for all their internal database operations across all Unix versions (Linux, BSD, AIX, Solaris, with MacOS X arriving shortly).

Royal - The modern Royal Typewriter company, their online e-Commerce web site stores everything using PostgreSQL.

The American Chemical Society - The largest professional organization of Chemists in the world, with over 165,000 members, and a web site that receives more than 12 million visits every day.  Their Journal Archive stores 125 years of full publications (2.5 million pages, more than 1 terabyte of data) using PostgreSQL.

Spatial Databases

Like any relational database, a spatial database is simply a system which characterizes, stores, and allows random access to large sets of structurally similar data.  The only difference is that the data in a spatial database can include objects with location, shape and dimension.  However, despite this simple semantic difference, any additional support capabilities are required.  

Compared to other objects, spatial objects require different indexing systems, different input and output specifications, and numerous specialized comparison and analysis functions.  For example, to test whether two strings are the equal, a byte-by-byte comparison will suffice.  But to test whether two linestrings are equal requires that the individual points which make up the linestring be independently checked -- two linestrings with identical points in opposite orders are identical logically (they describe the same shape in the same spatial location and dimension), but not in their electronic byte-by-byte representation! 

2.1 Capabilities of a Spatial Database

Historically, databases were not spatially enabled and could not directly store information about location and shape.  This spatial component was stored, in a proprietary format, completely separate from the main attribute database and coupled using a reference present in both systems.  The name of ESRI’s product “ARC/INFO” exemplifies this – “ARC” referred to the spatial component and “INFO” refers to the database component.  

This detachment caused havoc because the two datasets were often desynchronized and inconsistent – changes to the spatial side did not necessarily correspond to changes in the attribute side and vice-versa.  

Bringing the spatial information together with the attribute information allows the database to provide its standard transactional support, integrity checks, access control, indexing and other services in a unified manner. 

Most of the normal data objects in a relational database (i.e. numbers, dates, and character strings) have relationships (i.e. greater than or less than) and operations (i.e. addition or multiplication) associated with them.  In exactly the same way spatial objects have spatial relationships and spatial operations.

2.1.1 Spatial Objects

Spatial databases store a representation of, what are usually actual physical objects.  Since it is impossible to store the actual physical object the object must first be reduced to an abstract representation.  For example, a fire hydrant maybe reduced to a single point representing its location in a city, or a small circle-like area representing its placement near a sidewalk.  In either case, the actual hydrant  is represented by its spatial component (location or shape) and attributes like its last servicing date, color, number of times it has been used, or even another spatial object – its service area.  These representations usually reduce objects to points, lines, or polygons.

Points are the simplest representation – a single location in space.  This representation does not contain any information about the shape of an object since a zero-dimensional point has no description of shape or size.  Since point objects are very easy to understand and manipulate, they are often chosen to represent small objects whose only important feature is their location.  Points should not be used to represent objects whose extents or shape is important.

Lines are slightly more complex representations for  linear objects.  Lines, one-dimensional objects, do not have an area, but they do have a shape.  They are excellent for representing objects whose length is important, but not their width like roads, rivers, power lines, and pipelines.  Since lines do not have any area (they are mathematically infinitely thin), they can often give misleading results – real roads are wide enough to accommodate a car and real rivers actually separate the two banks.

Polygons are the most complex representation – they represent areal features.  These two-dimensional objects have a location, shape, and area – like parks, cities, properties, and lakes.  Although polygons are often the most accurate representation of an object, one must remember that they are the most difficult to use and are far from a perfect representation of the object.

A single object may be best represented by a collection of simpler objects – for example a group of islands owned by one person, all the mailboxes on a street, or all the tributaries of a major river.  A single spatial object could also be described by a conglomeration of different spatial types – for example fish habitat could be described by a set of lines and polygons representing the rivers and lakes the fish lives in.

Although the database is capable of holding any of these types of spatial data, it is the responsibility of the database designer to choose what data is used and how it is represented.  The designer would have to ensure that the data is appropriate for the application and has the necessary accuracy and detail.  If an overly complex representation is chosen (i.e. polygons instead of simple points), the resulting data could be too cumbersome to use efficiently.  If an overly simple representation is used (i.e. lines for roads when the width of the road is important), the necessary analysis may be impossible or flawed.  The designer must also be aware that the spatial objects are not only an approximation, but an interpretation of actual objects – there are inherent judgement and accuracy issues involved in the collection of the data.
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Example of Points and Lines – the black linear features represent roads and the orange points represent mailboxes.
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Example of Polygons – the colored polygon areas represent different types of land – ocean is blue, forested land is green, and urban areas are orange.

2.1.2 Spatial Relationships

Relational databases contain objects, like numbers and dates, that have relationships with each other.  For example, August 10th is before August 12th, 12 is greater than 10, and ‘toy’ is alphabetically after ‘ball’.  Spatial objects also have relationships between each other, and their complexity allows for a much richer variety of relationships than the simpler non-spatial database objects.

Consider two spatial objects, a desk and a book, that have several spatial relationships.  One of the most obvious relationships is how far apart they are – they could be close or very far distant.  When they are very close together, the book could be contained inside one of the drawers of the desk, or it could on top.  These represent archetypes of general spatial relationships – proximity, containment, and adjacency.  Within a spatial database, relationships such as these, are easy to determine and are frequently used in calculations and queries.

Proximity (distance)
The distance between two objects is a fundamental relationship between them – a spatial database allows the easy selection of objects based on how far apart they are.  The distance between two spatial objects is the shortest distance of separation.
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Distance between points is simple.
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The distance between a point and line is the shortest distance separating them.
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The distance between two lines.
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Distance between polygons.

By having data organized within the spatial database, one can easily make queries to find objects based on their separation.  For example, one may want to find all the points that are within a certain distance from a line, or all the lines that are within a certain distance from a set of polygons.  
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Point-Line distance: Selecting mailboxes that are within 25 feet of Main street.

[image: image8.png]



Line-Polygon distance: Selecting roads that are within 10 feet of a park.

Containment

A spatial object can be completely inside another spatial object – this relationship is called containment. Although one may think that only polygons can contain other polygons, the definition also holds true for points and lines.  This is a special case of two objects having a distance of zero between them – with the added constraint that the maximum distance is also zero.
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The pink point is contained in the black line.
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The blue polygon is contained in the green polygon.
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The pink line is contained in the black line.
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The black line is contained in the green polygon.

Within the spatial database, it is simple to query for all the objects contained within another set of objects.  For example, if the spatial database has lines representing rivers and polygons representing watersheds (the drainage area for a river network) it would be simple to find the rivers that belong to each of the watersheds.  Since the rivers are contained within the watersheds, a simple containment search would be executed.  Rivers that were not contained in a watershed would represent either missing watersheds or incorrectly placed watersheds or rivers.
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Rivers (blue lines) are contained within polygons representing watersheds 
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This river segment is not contained within a single polygon and represents an error either in the river or watershed delineation.

Adjacency/Connectivity
Two spatial objects are adjacent if the objects touch but do not overlap. Adjacent objects have proximity zero because their boundaries are touching, but the interiors of the objects do not overlap.
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This relationship is very important for finding features that act as the boundary of other features.  For example, roads often delineate the boundary of parks.  By using the adjacency relationship, one can find roads that make up park boundaries.
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Road that are adjacent to the park (orange) are part of its boundary.

Polygons often form a slightly complex structure called a coverage when an entire area is covered by non-overlapping polygons.  In such a case each polygon only touches its neighbors at the boundary; they are adjacent.  This property is used to simplify analysis of the data.  When these polygons are organized in a spatial database, it is easy to query for neighboring polygons.  The spatial database can also verify a coverage by ensuring that polygons that have distance zero are also adjacent.
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Land ownership polygonal coverage – the entire area is covered by non-overlapping polygons that represent land owned by different people. The red polygons are neighbors of the yellow polygon.
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This coverage has an error in it – one of the polygons overlaps (red area) a neighbor. 

A similar relationship is connectivity – linear features that join to form a connected network.  Roads and rivers are often treated as a network because the interrelated flow of traffic or water is of critical importance.  
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Tributaries of the main river are connected to it.  A river network can be constructed by finding the smaller tributary rivers that connect to a major river.

2.1.3 Spatial Operations

Just as one might want to use the database to perform simple operations on standard datatypes, there are many operations that one might want to perform on a spatial object.  For example, one may wish to compute the area or perimeter of a polygon, the length of a line, or the number of points in an object.  In some cases one might want to create entirely new objects by combining or intersecting other objects.  For example, a union of polygons representing Canada, the U.S.A., and Mexico would give a new polygon that represents the NAFTA area.  Intersecting all the roads in a city with a park polygon would return the roads that are inside the park, chopping roads that are only partially inside parks. 
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Example of the Union and Intersection operations on polygons.

Another common operation is buffering which makes a new feature that represents the area near the original feature.  While the proximity relationship allows one to search for objects near another object, the buffer operation actually constructs a new feature.  This new feature can then be intersected with other objects to construct the actual portion of an object that is near another object.
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A river network before buffering.
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The river network after buffering.  The buffer operation creates polygons that represent the area near a feature.
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The yellow polygon represents a forest clear-cut, and the blue polygon represent the buffer around a river (the riparian zone).  The red polygon represents the area of logging near the river– an important environmental factor usually called ‘stream side logging’.  It is determined by intersecting the two polygonal objects. 

2.1.4 Summary

Spatial databases extend a relational database by adding many extra capabilities.  This extension has promoted spatial objects from external information loosely connected to the database to first class citizens inside the database.  These spatial objects are treated the same as other database objects, like numbers and dates, with complete access to the standard features provided by a database: transactions, backup, integrity checking, security, locking, multi-user access, and the SQL query interface.

The spatial objects are representations of, usually, actual real world objects.  The spatial database stores them abstractly as points, lines, and polygons.  Points are used to represent objects whose only important feature is their location.  Lines are used to represent objects whose length is important, but not their width.  Polygons are used to represent objects that have location, shape and area.  The database designer must carefully choose the representation of the spatial objects – too simple a representation will make analysis impossible and too complex a representation will make analysis cumbersome.

Spatial objects have special relationships between each other, and the spatial database provides easy access to queries involving these relationships.  These relationships involve proximity – where objects are in relation to each other.  These relationships are most interesting when the objects are very close.  If they’re touching but not overlapping, they’re adjacent.  If one is completely inside another, that object is said to be contained within another object.  Spatial relationships such as these provide a language in which spatial queries can be performed for retrieving and verifying information.

The spatial database also provides analysis operations that generate information about an object and creating new objects based on already existing objects.  The information returned from functions such as length and area, allows the object to be transformed from the spatial domain to the attribute domain.  Other operations, such as intersection and buffer, transform a spatial object into a new object with new properties and relationships.  These operations and objects provided a rich spatial analysis environment entirely within  the database.

2.2 OpenGIS “Simple Features for SQL”

The  plethora of proprietary spatial data formats, definitions, and software made sharing information between different applications and projects almost impossible.  In response to this a group of GIS software providers, government agencies, and universities banded together to form the OpenGIS Consortium  (OGC).  When asked why OpenGIS was necessary, they answered:

“Much geospatial data is available on the web and in off-line archives, but it is complex, heterogeneous, and incompatible. Users must possess considerable expertise and special geographic information system (GIS) software to overlay or otherwise combine different map layers of the same 
geographic region. Data conversion is cumbersome and time-consuming, and the results are often unsatisfactory. Common interfaces are the only way to enable overlays and combinations of complex and essentially different kinds of geographic information to happen automatically over the Internet, despite differences in the underlying GIS software systems. OGC brings together the key players and provides a formal structure for achieving consensus on the common interfaces.”  (from “Frequently Asked Questions about OpenGIS”)

The OGC immediately went through a detailed review process to provide a comprehensive suite of open interface specifications.  One of the first, and most important, specification was the “Abstract Simple Features Specification” which gave a rigorous mathematical definition of valid features (points, lines, and polygons) and various operations on them.  Prior to these definitions, a valid polygon in one system might be an invalid polygon in another, or an assertion about two objects might have different meanings in different systems.  The goal was to ensure that two systems that were “OGC Simple Features” compliant would be able to consistently interact with each other.  

OGC also defined interfaces for how one piece of software would interact with another.  For example the Web Map Server (WMS) and Web Feature Server (WFS) specifications define how applications can connect, query, and retrieve maps and features from remote WMS or WFS servers.  This allows very complex systems to be constructed from a set of OGC compliant components.  For example, a web-based GIS analysis system could be constructed from one company’s OGC Web Map Server (to produce maps), another company’s OGC Web Feature Server (to provide data for the WMS and application), and a third company’s OGC spatial database (to organize the data for the WFS).  Without standards, this interoperability would be impossible and the solution would be prohibitively expensive and unmaintainable.  
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Constructing a custom GIS application from off-the-shelf OGC components.

The “Simple Features Specification for SQL” (SFSQL) was published in 1999 and extended the Abstract Specification for use in a database.  It preserved all the mathematical definitions of features and their operations, but added prerequisites for organizing the database organization and the exact usage and results of the spatially-enabled SQL commands.  The specification laid out commands for inserting (and representing) features, determining complex spatial relationships, and performing spatial operations.  The International Standards Organization (ISO) produced the SQL/MM (SQL Multi-Media) specification that is  fundamentally the same as the SFSQL with all the function names prefixed with “ST_”.

The SFSQL specification was important because it provided a basis for organizing spatial data within the normal relational structure, but also provided a high-level interface that future specification could be based upon – like the WMS and WFS.  In fact many of the later specifications are trivial to implement if built upon a SFSQL database because most of the data organization, operations, queries, integrity checking, transaction, and indexing are transparently handled. 

<GetFeature handle="Query01">

<Query>


<PropertyName>TEMPERATURE.TEMP</PropertyName>

<PropertyName> TEMPERATURE.DEPTH</PropertyName>

<Filter>


<And>


<Not>



<Disjoint>



<PropertyName> TEMPERATURE.LOCATION</PropertyName>



<gml:Box>




<gml:coordinates>-58.0,46.0 –47.0,52.0</gml:coordinates>



</gml:Box>



</Disjoint>


</Not>

   

<PropertyIsGreaterThanOrEqualTo>




<PropertyName> TEMPERATURE.DEPTH </PropertyName>


  
<Literal>100</Literal>




</PropertyIsGreaterThanOrEqualTo>


</Filter>


</Query>

</GetFeature>
SELECT TEMPERATURE.TEMP, TEMPERATURE.DEPTH FROM TEMPERATURE

WHERE 
(TEMPERATURE.DEPTH >= 100) AND

      
NOT( Disjoint(





TEMPERATURE.LOCATION, 





GeometryFromText(‘BOX(-58.0 46.0,–47.0 52.0)’)






))


Example of a Web Feature Server request (in XML) and a corresponding SFSQL query.  The query is for sea temperature measuring stations in a region (‘box’) having a depth greater than 100m.

2.3 Examples of Uses of SFSQL Database

SFSQL gives a unified and powerful data access repository that uses simple SQL commands to access data and process complex operations.  In this section, a full example will be given to show how simple data is entered in the system, then some of the previous examples will be specified in the SFSQL syntax.

2.3.1 Simple Pollution Example

In this example, we will be looking at a small town that is worried about the air pollution that their children are being exposed to at school.  The four pollution sites given off various amounts of Carbon Dioxide (CO2) and Nitrous-oxide (NOx).
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First we create a spatially-enabled table and the pollution spatial object – points with a location, name, and  CO2  and NOX discharge amounts and add the four pollution sites to it.

# Create a database table

CREATE TABLE pollution (
name varchar, 






co2 float,


nox float);

# Add a geometry column to the table named ‘location’.  This geometry

# column will be points, and will have a spatial referencing 

# system id of 2167 (an Albers Equal Area projection).

# This function is used because OGC requires meta-information 

# to be stored in the database.

SELECT AddGeometryColumn(‘pollution_db’,’pollution’,’location’,2167,’POINT’,0);

# Add Site A to the table – including its location.

# The location is created from a text representation of the point’s

# location and its spatial referencing system id

INSERT INTO pollution VALUES(‘Site A’,





23.4,





0.18,





GeometryFromText(






‘POINT(119131 383324)’, 2167






)




);

SELECT * FROM pollution;

Name      co2  nox         location

-----------------------------------------

Site A   23.4  0.18  POINT(119131 383324)
Notice that the spatial objects are treated exactly the same as the other attributes by the database.  Queries such as finding the pollution sites that are less than 500 feet from the school are easily executed.  The school is located at the point (119000 383000).

SELECT name, co2, nox FROM pollution 


WHERE


distance(location,



GeometryFromText(‘POINT(119000 383000)’,2167) 


) < 500;

name     co2    nox

---------------------

Site A   23.4    0.18

Site B   64.9  248.5
More complex analyses are also easily performed.  For example, a very simple air pollution model is that the amount of pollution decreases linearly from its source:


Pollution at a point = (Source Pollution)/ distance

SELECT  sum( 



co2 /




distance(location,




 
GeometryFromText(‘POINT(119000 383000)’,2167))




) AS weighted_co2_amount

 
FROM pollution ;

 sum

-----
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2.3.2 Relationships and Operations

In the previous sections, relationships and operations that spatial databases support were defined.  This section will show how a SFSQL database supports these concepts.  

Suppose the database already contains three tables: a polygonal coverage of watersheds, a line network of rivers, and a set of polygons representing clear-cut areas.  The user wants to find all the rivers that are contained inside a particular watershed named ‘Alberni’.  The SFSQL statement would be:

SELECT rivers.name FROM rivers, watersheds WHERE

contains( watersheds.polygon, Rivers.line) AND

watersheds.name = ‘Alberni’;
After noticing that some reports were not quite correct, the user thinks that some of the watersheds may be incorrect – some of the rivers might be crossing the watershed boundaries.  Since SFSQL allows for the spatial relationship called ‘crosses’ (two objects that overlap but are not contained), the user executes this query to find the problem rivers:

SELECT rivers.name FROM rivers, watersheds WHERE



crosses( watersheds.polygon, Rivers.line);

Alternatively, one could use a more complex query that checks, for each river, to see if it is contained in a watershed:

SELECT rivers.name FROM rivers WHERE


NOT (EXISTS(



SELECT * FROM watersheds WHERE 



 contains( watersheds.polygon, Rivers.line)




));

The user may also want to validate the watershed coverage by ensuring that no two polygons overlap.  This query will return any two different polygons that overlap:

SELECT ws1.name FROM watersheds ws1, watersheds ws2 WHERE

NOT(ws1.id = ws2.id) AND

overlaps(Ws1.polygon, ws2.polygon);
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Rivers (blue lines) are contained within polygons representing watersheds.  Two errors are shown: a river that is not contained in exactly one watershed, and a watershed that overlaps another watershed.  These problems are easily detected in a spatial database.

Next, the user may want to split the clear-cut polygons so that each polygon that spans multiple watersheds will be split at the boundary.  Clear-cuts that are contained in a single watershed do not need splitting.

SELECT watersheds.name, clearcuts.name, 



intersection(clearcuts.polygon, watershed.polygon) 



FROM watersheds, clearcuts WHERE




overlaps(clearcuts.polygon, watershed.polygon);
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A clear-cut straddling watersheds – it will be split into two polygons at the watershed boundary.

Finally, the user may want to find the area of clear-cuts within 25 feet of streams. First we will create the buffered rivers with the buffer function and then intersect these buffered polygons with the clear-cut polygons.  We  do not report areas where the clear-cuts are far away from streams.

SELECT rivers.name, clearcuts.name, 



intersection( buffer(rivers.lines,25)  ,





clearcuts.polygon) as stream_side_logging


FROM rivers, clearcuts WHERE


overlaps( buffer(rivers.lines,25)  ,





clearcuts.polygon);
[image: image29.png]Clear-cut

)




The orange polygon represents a forest clear cut, and the blue polygon the buffer around a river (the riparian zone).  The small red polygon represent the area of logging near the river – the intersection of the clear-cut and riparian zone polygons.  

PostGIS

[image: image31.png]ARCHu

Refractions
RESE



PostGIS is an extension to the PostgreSQL relational database system which provides spatial database functionality: spatial objects, spatial indexing, standard input/output representations, spatial functions and spatial operators.  PostGIS uses the OpenGIS "Simple Features for SQL" specification as a guide to the required object types,  functions, function names, and object input/output representations.  By following the OpenGIS specification, PostGIS will provide a feature-complete, standards compliant, open source spatial database.

PostGIS is open source software licensed under the GNU General Public License (GPL).  Source code and documentation are freely available for download at http://postgis.refractions.net.  The source code archive is currently downloaded about 300 times a month, and the project support mailing list has 200 members. 

1.4 Development History

PostGIS is primarily a development of Refractions Research in Victoria, Canada.  Refractions had explored spatial database implementations in PostgreSQL several times leading up to the development of PostGIS.  Each prior attempt (BLOB feature storage, pure relational feature storage, PostgreSQL native geometric types) lead to a blind alley, resulting in an overly complex implementation, very low performance, or unpleasant combinations of the two

Performance testing in the spring of 2001 indicated that a native PostgreSQL type was the design path we wanted to follow.  PostgreSQL built-in geometric types had the performance characteristics we desired, but were too simple for use in GIS applications.  

PostGIS was not a realistic development project until the 7.1 release of PostgreSQL in April 2001 which removed limitations on the maximum record size in the database.  Prior to 7.1 the maximum record size was the 8Kb page size.  Even with terse binary representations, spatial objects exceed 8Kb relatively frequently -- a 400 vertex polygon would exceed the page size.  With the page size limitation lifted, development of PostGIS started in April 2001.

The first release (0.1) in May 2001 included the basics of a spatial database, spatial objects with a standard representation (in this case OpenGIS well-known text), spatial indexing to allow fast random access, and some simple analytical functions such as area() and length().  All the OpenGIS object types were supported: POINT, LINE, POLYGON, GEOMETRYCOLLECTION and MULTI* geometries.

The 0.2 release in June 2001 added the OpenGIS binary representation (well-known binary), support for Windows platforms, and documentation for new users.  Feedback from users at this point noted that the PostGIS function names were not following the OpenGIS specification for equivalent functionality.  

The 0.5 release in July 2001 began to add all the OpenGIS conformance possible with the base functionality currently available.  A couple dozen OpenGIS accessor functions were added, and nonstandard equivalent functions were removed in favor of their standard analogues.  With funding from the British Columbia government, support for calculations of length on the surface of a spheroid was added for this release. At this point Refractions was hosting the British Columbia Digital Roads Atlas (DRA) on PostGIS, and using the database for schema and data transformations in support of DRA client organizations (ambulance dispatch, emergency response, municipalities, etc).

The 0.5 release was important because it was coincident with the release of PostGIS support in the University of Minnesota Mapserver.  UMN Mapserver is an open-source internet mapping engine, like the ESRI ArcIMS system, and adding PostGIS support improved both systems substantially.  For PostGIS, there was an interface to visually examine the spatial features stored within a PostGIS database, and it was web-enabled as well!  For Mapserver, PostGIS provided a data source which was easily read/writable in the kind of transactionally heavy situations which web services generate.  With standard GIS files as a data source, writing data back into the source files risked corruption if two users committed a simultaneous write -- using PostGIS as the data source ensured data integrity.  It also allowed application developers to avoid difficult data management structures like tiled data sets in favor of complete continuous coverages. 

Release 0.6 in September 2001 completed OpenGIS support, adding standard metadata tables and support for spatial referencing system identifiers.  Another dozen OpenGIS support functions were added and Mapserver support was enhanced, with the ability to do spatial and attribute queries against the database.

In February 2002, PostgreSQL 7.2 was released, including a change to the GiST indexing APIs used by PostGIS for spatial indexing.  Because the API had changed, it was not possible to use the 0.6 release against PostgreSQL 7.2.  ImageLinks, Intevation GmbH and Rod Anderson all provided funding in a collaborative project to expedite the addition of PostgreSQL 7.2 support into PostGIS.  The 0.7 release in May 2002 included support for the new GiST API, and support for coordinate transformations as well.  The new GiST indexes also included a linear-time algorithm for building R-Trees, which improved scalability and performance substantially.

1.5 Current Capabilities

The current 0.7.2 release of PostGIS supports the following aspects of the OpenGIS "Simple Features Specification for SQL" (SFSQL) specification:

· All spatial object types (POINT, LINESTRING, POLYGON, MULTIPOINT, MULTILINESTRING, MULTIPOLYGON, GEOMETRYCOLLECTION)

· All object representations.  Well-known text (WKT) and well-known-binary (WKB)

· All accessor and constructor methods. (e.g. GeomFromText(), AsBinary(), GeometryN(), Envelope(), X(), Y())

· Simple spatial analysis functions (Area() and Length()) as well as some of the more complex analysis functions such as Distance().

· Database metadata schema (e.g. GEOMETRY_COLUMNS, SPATIAL_REF_SYS) and support functions (e.g. AddGeometryColumn(), DropGeometryColumn())

· Binary predicates (e.g. Contains(), Within(), Overlaps(), Touches()) test the spatial relationship between two objects and return a boolean true-or-false result. They are used for computing exact spatial relationships such as "find all the houses which fall completely within this school district boundary". It is possible to simulate some of the predicates using the existing Distance() function (Distance() = 0 implies two objects are either touching, contained, or overlapping but not disjoint), but full support is not yet complete.

· Spatial operators (e.g. Union(), Difference(), Buffer()) take in two spatial objects and return a new spatial object.  For example, the Union() operator melts the boundaries between polygons. Two overlapping polygons could be Union()'ed into a single new polygon with the maximum boundary of the two original polygons.

In addition to the SFSQL capabilities, PostGIS has the following additional functionality:

· Coordinate transformation in the database.  Geometries may be transformed from one projection to another inside the database using the Transform() function.  Because OpenGIS geometries include an SRID (spatial referencing system identifier) as part of their structure, the function syntax is just Transform(<Geometry>,<DestinationSRID>).  For an unknown reason, the semantics of Transform() were not included by OpenGIS in the SFSQL specification, even though a requirement for explicit SRIDs attached to geometries was included.

· Length calculations on a spheroid.  Geometries stored in geographic coordinate systems (lat/lon) can have linear length calculated directly without a coordinate transformation.

· Three dimensional geometries.  The SFSQL specification deals exclusively with two-dimensional geometries.  PostGIS supports three dimensional geometries internally, and uses the input dimension of a geometry to determine which output representation to provide.  For example, even though all geometries are stored internally as three dimensional, a point inserted with only two dimensions would always be returned by queries as two dimensional.  Additional functions (force_2d() and force_3d()) to force geometries into different dimensions are also provided.

· Spatial aggregates.  In databases, an aggregate function is one which performs a running total operation on a number of values in a data column.  Sum() or Average() are examples of numerical aggregates (e.g. SELECT SUM(RAINFALL) FROM WEATHERHISTORY).  A spatial aggregate performs similar operations spatially.  The Extent() aggregate returns the maximum bounding box of a set of features.  For example, "SELECT EXTENT(GEOM) FROM ROADS" would return the bounding box of the entire ROADS table.  The Collect() function takes a set of geometries and returns an equivalent GEOMETRYCOLLECTION object.

· Raster Datatypes.  PostGIS supports the storage of large raster objects through a new spatial data type, the "chip".  Chips consist of a bounding box (to allow the data to be geolocated), an SRID (to provide spatial referencing context), a type (to indicate the kind of data stored in the chip) and a byte array (to hold the actual raster data).  By keeping chips under the database page size (32x32 pixels), very fast random access is possible.  Large images are stored by "chipping" them into 32x32 storage chips and saving them in the database.

1.6 Development Timetable

Future PostGIS development will focus on two core goals: achieving OpenGIS standards compliance and increasing interoperability with other products.

To complete OpenGIS standards compliance, PostGIS needs to add the binary predicates and spatial operators.  Refractions Research has initiated a join development project with Vivid Solutions (also of Victoria, Canada) and the University of Victoria to create a C++ library which supports the binary predicates and operators.  This new library, called GEOS (Geometry Engine Open Source), will form the basis for spatial analytic functions in the 0.8 release of PostGIS.  

Interoperability with third party products is important to making PostGIS a useful tool for general users.  A PostGIS Reader/Writer for the Feature Manipulation Engine (www.safe.com/fme) is currently in beta.  The UMN Mapserver continues to be maintained and enhanced.  Refractions is exploring a more ambitious integration program using funding from the Canadian Government GeoConnections program, focussing on integration with the ESRI desktop GIS toolkit, particularly the Arc8 family.

1.6.1 PostGIS History and Goals Timeline

	Date
	Ver.
	Description

	May 25, 2001
	0.1
	Basic objects and spatial indexing

	June 19, 2001
	0.2
	Well-known binary support, shape file loader, and documentation.

	July 20, 2001
	0.5
	UMN Mapserver support, OpenGIS standards support, shape file dumper

	September 19, 2001
	0.6
	More OpenGIS standards support, better UMN Mapserver support, SRID support, metadata tables

	October 15, 2001
	0.6.1
	Minor bug fix release

	November 7, 2001
	0.6.2
	Bug fixes for loader/dumper programs, spatial reference system definitions for OpenGIS support tables

	May 4, 2002
	0.7.0
	Coordinate transformation support, support for new PostgreSQL 7.2 indexes, distance-on-a-spheroid support, patches to the loader/dumper

	May 14, 2002
	0.7.1
	Patch to the 7.2 index support, code cleanup

	September 1, 2002
	0.7.2
	Bug fixes to the loader/dumper, preparation for PostgreSQL 7.3 support, bug fixes

	September 5, 2002
	0.7.3
	Enhancements to build system, bug fix in 7.3 support

	November 24, 2003
	0.8
	Integration of GEOS spatial predicates and operators into PostGIS. Complete testing of OpenGIS SFSQL specification.

	September  2004
	0.9
	Integration of LWGEOM into main PostGIS core and testing.

	November
2004
	1.0
	Release of “1.0” branded PostGIS, after conformance testing with OpenGIS..


1.7 Extensibility

One of the exciting aspects of open-source development is the numerous potential development roads a project can follow.  The OpenGIS SFSQL specification has been a good early road map, but compliance is nearly complete, and once it is there are several new features which make sense to pursue.

· N-Dimensional objects.  Because we live in a three-dimensional world, we tend to think that three dimensions are all that are needed to characterize a spatial object.  However, extra dimensions can be put to use in many applications.  For example, a stream network database could store the X/Y/Z coordinates as well as the instantaneous slope at each vertex in a four-dimensional structure.  Or truly four-dimensional data-sets could be stored, such as times and locations of GPS signals from wild animal tracking collars.  Four-dimensional storage would allow researchers to run simple queries to determine all times and locations that individual animals came within a certain proximity of one another. 

· Multidimensional indexing.  R-Tree indexing is theoretically extensible to multiple dimensions, and N-dimensional objects would require N-dimensional indexing for optimal use.  The current implementation only indexes based on the first two dimensions of the object.  Multi-dimensional indexing would allow fully temporal databases, or unified multi-resolution databases.  For example, a table of raster data could be indexed not just by the spatial location of the chips, but by the resolution of the pixels in the chip, so a query could use a three-dimensional volume to request an image of a particular area in a certain resolution range.  Or a database of customer locations could be indexed by both location and first/last contacts.

· Long transactions.  The OpenGIS WFS specification requires that the WFS server be able to grant a lock on features to a WFS client.  WFS servers using PostGIS will require a long transaction schema in order to grant locks.  This development should be useful to general PostgreSQL users as well, since long transactions show up in non-spatial contexts as well.

· Networks, Coverages, Triangulations.  Advanced topological structures are important to numerous spatial applications, and could benefit from storage in an RDBMS context.

· Linear Referencing.  Linear referencing allows attributes to be mapped onto line segments at a finer level than the usual simple segment-to-attribute method.  For example, to map speed limits onto a road network it is more efficient and flexible to assign speed limits to portions of road segments than it is to break the network up into separate segments for each different speed limit.  Linear referencing also allows the same network to be used as a spatial basis for multiple referenced attribute sets.  For example, a stream network could have channel widths referenced onto it, along with fish habitat and known disturbance zones.

1.8 Comparison to OracleSpatial 9i

1.8.1 Features Comparison

As of this writing, OracleSpatial 9.2 has a richer set of features than PostGIS 0.7.2.  However, things can change quickly – at the time of the release of PostGIS 0.7.2, PostGIS was more feature rich than Oracle’s current offering, OracleSpatial 8i.

	Oracle
	PostGIS

	Object types: POINT, LINE, POLYGON, MULTIPOINT, MULTILINE, MULTIPOLYGON, COLLECTION, CURVE, MULTICURVE
	Object types: POINT, LINESTRING, POLYGON, MULTIPOINT, MULTILINESTRING, MULTIPOLYGON, GEOMETRYCOLLECTION, CHIP

	Indexing types: R-Tree, QuadTree
	Indexing types: R-Tree

	Support for linear referencing.
	No support for linear referencing.

	Complete set of nine spatial predicates: TOUCH, OVERLAPBDYDISJOINT, OVERLAPBDYINTERSECT, EQUAL, INSIDE, COVEREDBY, CONTAINS, COVERS, ANYINTERACT   
	Two predicates supported by Distance(): INTERACTS, DISJOINT

	Complete set of spatial operators: BUFFER, CONVEXHULL, MBR, AREA, DISTANCE, LENGTH, UNION, XOR, CENTROID, INTERSECTION
	Partial set of spatial operators: AREA, DISTANCE, LENGTH, CENTROID, ENVELOPE

	Coordinate transformation support.
	Coordinate transformation support.

	Calculations of distance and area on a spheroid.
	Calculations of distance on a spheroid.

	JDBC spatial data access API provided.
	JDBC spatial data access API provided.

	Supported by UMN Mapserver.
	Supported by UMN Mapserver.

	Transparent two-stage queries. For example, SDO_WITHIN_DISTANCE will run an appropriate bounding box query and then run the computationally intensive distance query on the subset.
	Explicit two-stage queries only.  Either nested SELECT statements placing the bounding box query within the intensive calculation, or compound AND statement.

	Geo-coding supported by external geo-coding providers.
	Geo-coding supported by external geo-coding providers.

	Spatial aggregates: AGGR_UNION, AGGR_MBR, AGGR_CONVEX_HULL, AGGR_CENTROID
	Spatial aggregates: ENVELOPE, COLLECT, EXTENT

	Includes Oracle MapViewer Java application toolkit.
	Supported first-tier data source for GeoTools, open source Java application toolkit.


1.8.2 Standards Compliance Comparison

	Oracle
	Refractions

	Oracle is a member of the OpenGIS consortium.
	Refractions Research is not a member of the OpenGIS consortium.

	Oracle supports all the OpenGIS object types (POINT, LINE, POLYGON, MULTIPOINT, MULTILINE, MULTIPOLYGON, COLLECTION) although with slightly non-standard names.
	PostGIS supports all the OpenGIS object types (POINT, LINESTRING, POLYGON, MULTIPOINT, MULTILINESTRING, MULTIPOLYGON, GEOMETRYCOLLECTION).

	Oracle supports none of the OpenGIS functional namespace.  Although the native capabilities of OracleSpatial are such that full support of the OpenGIS SFSQL specification is possible, the OracleSpatial function namespace is almost completely different.  A few Oracle functions (SDO_RELATE, SDO_DIFFERENCE) are similar to their OpenGIS counterparts (Relate, Difference). None of the OpenGIS accessor functions are provided, even in renamed forms.
	PostGIS supports as much of the OpenGIS functional namespace as its functionality can provide.

	Oracle uses its own representations of geometries, which probably derive somewhat from the original Spatial Data Option (SDO) of the mid-1990s.  For example, a polygon is represented like this: MDSYS.SDO_GEOMETRY(2003, NULL, NULL, MDSYS.SDO_ELEM_INFO_ARRAY(1,1003,1, 19,2003,1), MDSYS.SDO_ORDINATE_ARRAY(2,4, 4,3, 10,3, 13,5, 13,9, 11,13, 5,13, 2,11, 2,4, 7,5, 7,10, 10,10, 10,5, 7,5, 2,4))
	PostGIS supports the OpenGIS well-known text and well-known binary representations of geometries. For example, POLYGON((2 4, 4 3, 10 3, 13 5, 13 9, 11 13, 5 13,2 11,2 4, 7 5, 7 10,10 10, 10 5, 7 5, 2 4)).

	Oracle uses OpenGIS SRTEXT representations exclusively to provide coordinate system capabilities.
	PostGIS uses OpenGIS SRTEXT representations alongside PROJ4 representations to provide coordinate system capabilities.

	Oracle provides geometry validity checking routines which use many of the OpenGIS validity rules as well as some additional strictures. (For example, right-hand rule is strictly required.)
	PostGIS uses the OpenGIS abstract features specification as a guide to what constitutes valid and invalid geometries.


1.8.3 Performance Comparison

Oracle licensing prohibits the publication of benchmarks without prior authorization from Oracle corporation.  Benchmarks undertaken for this study will be provided under a separate cover, with an understanding that they are not official or provided for publication.

The benchmarking tests will address the following use cases in PostGIS and Oracle Spatial 9i:

· Data Loading

· Index Building

· Single User Query

· Multi User Query / Update / Insert
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